Max-Product Belief Propagation for Linear Programming: Applications to Combinatorial Optimization
نویسندگان
چکیده
The max-product Belief Propagation (BP) is a popular message-passing heuristic for approximating a maximum-a-posteriori (MAP) assignment in a joint distribution represented by a graphical model (GM). In the past years, it has been shown that BP can solve a few classes of Linear Programming (LP) formulations to combinatorial optimization problems including maximum weight matching, shortest path and network flow, i.e., BP can be used as a message-passing solver for certain combinatorial optimizations. However, those LPs and corresponding BP analysis are very sensitive to underlying problem setups, and it has been not clear what extent these results can be generalized to. In this paper, we obtain a generic criteria that BP converges to the optimal solution of given LP, and show that it is satisfied in LP formulations associated to many classical combinatorial optimization problems including maximum weight perfect matching, shortest path, traveling salesman, cycle packing, vertex/edge cover and network flow.
منابع مشابه
Linear programming analysis of loopy belief propagation for weighted matching
Loopy belief propagation has been employed in a wide variety of applications with great empirical success, but it comes with few theoretical guarantees. In this paper we investigate the use of the max-product form of belief propagation for weighted matching problems on general graphs. We show that max-product converges to the correct answer if the linear programming (LP) relaxation of the weigh...
متن کاملMinimum Weight Perfect Matching via Blossom Belief Propagation
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the re...
متن کاملLinear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints
In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...
متن کاملTightness of LP via Max-product Belief Propagation
We investigate the question of tightness of linear programming (LP) relaxation for finding a maximum weight independent set (MWIS) in sparse random weighted graphs. We show that an edge-based LP relaxation is asymptotically tight for Erdos-Renyi graph G(n, c/n) for c ≤ 2e and random regular graph G(n, r) for r ≤ 4 when node weights are i.i.d. with exponential distribution of mean 1. We establis...
متن کاملUsing Combinatorial Optimization within Max-Product Belief Propagation
In general, the problem of computing a maximum a posteriori (MAP) assignment in a Markov random field (MRF) is computationally intractable. However, in certain subclasses of MRF, an optimal or close-to-optimal assignment can be found very efficiently using combinatorial optimization algorithms: certain MRFs with mutual exclusion constraints can be solved using bipartite matching, and MRFs with ...
متن کامل